Traveling Wave Solutions of some Nonlinear Evolution Equations by Sine-Cosine Method
نویسندگان
چکیده
In this paper, we established traveling wave solutions of the nonlinear evolution equation. The sine-cosine method was used to construct travelling wave solutions of the Fitzhugh-Nagumo equation and Cahn-Allen equation. Graphical interpretation shows that obtained results include periodic and Soliton wave solutions. It is also shown that for α =−1, solutions of Fitzhugh-Nagumo equation coincide with solutions of Cahn-Allen equation.
منابع مشابه
New study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملTraveling Wave Solutions For Some Nonlinear (N + 1)-Dimensional Evolution Equations by Using (G
In this paper, with the aid of Maple, the (G ′ /G) and (1/G ′ )-expansion methods are applied to determine the exact solutions of (N+1)-dimensional generalized Boussinesq equation and (N+1)-dimensional sine-cosine-Gordon equation.These equations play a very important role in mathematical physics and engineering sciences. This methods are more powerful and will be used in further works to establ...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کامل